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Abstract

A nonlinear version of the threshold autoregressive model for time series is introduced. A
peculiar requirement on parameters, except possibly for the constant term, is the continuity, that
seems a natural and useful assumption. This model is a special case of the general state-dependent
models, where the moving-average term is dropped and a particular form for the dependence on
the state is speci3ed. Such model meets also the functional autoregressive model formulation, but
the “least demanding” functional form is assumed. Further restrictive assumptions are not needed.
Both identi3cation and estimation problems will be taken into account. The proposed approach
brings together the genetic algorithm, in its simplest binary form, and some basic features from
spline theory. It results in a powerful 8exible tool which is shown to be able to approximate
a wide class of nonlinear time series models. This method is found to compare favorably with
existing procedures in modeling some well-known real-time series, which often are taken as a
benchmark for testing and comparing modeling procedures.
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1. Introduction

A wide class of nonlinear models has been developed where the state of the dy-
namic system determines the “regime” which drives the time series. For instance, the
self-exciting threshold autoregressive (SETAR) models (see Tong, 1983, 1990, for
instance) are based on the assumption that the time series is generated by several al-
ternative linear autoregressive (AR) models according to the values assumed by some
past observations. The sample space is split into regions delimited by assigned borders,
or “thresholds”. Each region is associated with an AR model. Then, if the past obser-
vation is included in the ith region the ith AR model generates the next time series
value.

The notion of a threshold has been extended to the case where the AR parameters are
linear functions of the lagged values of the time series (see Ozaki, 1981; Tong, 1980).
It seems quite natural to link this extension to the class of the functional autoregressive
(FAR) models (Chen and Tsay, 1993; Cai et al., 2000), and to the even more general
state-dependent models (SDM) introduced by Priestley (1988). The SDM and the FAR
models, however, cope with fairly general coeHcients behavior. Nonparametric methods
or the extended Kalman 3lter have been proposed for parameters estimation. Though
useful and 8exible, neither provides a simple formula for representing the behavior of
the estimated parameters. It is sometimes preferable to have a closed functional form
available, which is easy to both estimate and interpret. The simplest function we may
use is a 3rst-order polynomial, and make it to depend on a single lagged value of the
time series itself. If we allow the coeHcients to follow a piecewise linear curve, then
we may obtain directly a function which yields an accurate picture of the behavior of
each of the AR coeHcients. With limited additional computational eJort, the continu-
ity requirement may be ful3lled, as a piecewise linear continuous function is often a
good approximation for most analytic functions. Furthermore, increasing the number of
regimes may constitute a convenient way for approximating more complicated func-
tions, even if these latter may not be put in closed form. Let us call piecewise linear
SETAR (PLTAR) this class of models.

In order that a procedure for identifying and estimating a PLTAR model be really
feasible, however, a fast and eHcient algorithm is needed for locating the threshold
constants. In fact, it is likely that several values for both the delay parameter and
the model order have to be tried, and searching for the threshold constants has to be
routinely performed. The routine that we propose is based on the genetic algorithms
(GA) introduced by Holland (1975). The GAs are known to be able to provide us
with a powerful optimization tool when the solution space happens to be both discrete
and large, and the objective function does not ful3ll the usual regularity requirements,
such as continuity, diJerentiability and convexity (see, for instance, Michalewicz, 1996;
Man et al., 1999). In addition, the GAs have been proposed by Wu and Chang (2002)
for estimating SETAR models, and by Pittman and Murthy (2000) for 3tting piecewise
linear functions. So, our proposal seems to be adequately motivated for dealing with
PLTAR models by means of GAs. However, we have to design a special procedure
to take the PLTAR model features into account properly. We distinguish between the
identi3cation step and the estimation step. The former is a combinatorial-like problem
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which involves only discrete numbers, that is the delay parameter, the AR order, the
number and location of the threshold constants. All these are called the “structural
parameters”. Unless the size of the problem is small, the candidate solutions cannot be
enumerated and checked within a reasonable amount of time. On the other hand, the
latter step, estimation, may be performed without too much eJort, conditional on the
“structural parameters” values, using standard statistical methods.

The paper is organized as follows. In Section 2 the PLTAR model is presented in
some detail. In Section 3 basic spline theory is used to arrange the estimation task so
that the continuity requirement is ful3lled. In Section 4 the GA for 3nding appropriate
structural parameters is explained. In Section 5 results are reported concerning the
identi3cation and estimation of PLTAR model for some arti3cial time series. In Section
6 three well-known real-data sets are considered: the Canadian lynx data, the sunspot
numbers and the blow8y population data. In Section 7 conclusions are drawn.

2. The PLTAR model

A SDM for the time series {yt}, integer t, takes the form (Priestley, 1988)

yt =
p∑
j=1

�j(zt−1)yt−j + et −
q∑
j=1

�j(zt−1)et−j; (1)

where the array

zt−1 = (et−q; : : : ; et−1; yt−p; : : : ; yt−1)

is called the state vector at the time t − 1.
Many useful models are obtained by assuming some hypotheses on the functional

form of (1). For instance, a special case of the SDM is a SETAR model where it is
assumed that the functions �j(:)’s are all zero, the state vector is zt−1 =yt−d for some
integer d (the delay parameter), and the functions �j(:)’s may be written as

�j(yt−d) = c(i)
j if ri−1¡yt−d6 ri; i = 1; : : : ; k (2)

for j = 1; : : : ; p. The integer p has to be pre-speci3ed properly. The disjoint intervals
(ri−1; ri) partition the real axis, as we assume that r0 = −∞ and rk = +∞.

The delay parameter d, the number of regimes k, the threshold constants ri and the
AR model order p are called the “structural parameters”. Once such parameters are
determined, the AR coeHcients c(i)

j may be estimated by using standard least squares.

We consider in this paper the PLTAR model where the terms c(i)
j ’s are themselves

linear functions of the state yt−d, so that equalities (2), for j = 1; : : : ; p, generalize to

�j(yt−d) = �(i)
j + �(i)

j yt−d if ri−1¡yt−d6 ri; i = 1; : : : ; k: (3)

The coeHcients �j(:)’s are assumed continuous functions of the state yt−d. This as-
sumption seems of interest, because a piecewise linear function may satisfactorily ap-
proximate most analytic functions. Moreover, as Priestley (1988, p. 102) observes,
“in practice the threshold model is essentially a device for describing a continuous
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nonlinear relationship by a step-function approximation”; on the other hand “we can
always approximate a step function by a continuous function with large (but 3nite)
gradients”.

The piecewise linearity requirement may be easily incorporated in the model by
means of a simple re-parameterization similar to that used for spline functions. Let us
de3ne

S1(u) = u; Si(u) =

{
0 if u6 ri−1;

u− ri−1 if u¿ri−1;
i = 2; : : : ; k:

Then we may write

�j(yt−d) = �j +
k∑
i=1

�(i)
j Si(yt−d); (4)

where the correspondence with the previously used parameters �(i)
j ’s and �(i)

j ’s in (3)
is easily obtained

�(i)
j = �j −

i∑
s=1

�(s)
j rs−1; �(i)

j =
i∑

s=1

�(s)
j

and, by recalling (4), the complete model may be written as

yt =
p∑
j=1

�jyt−j +
p∑
j=1

k∑
i=1

�(i)
j Si(yt−d)yt−j + et (5)

and is characterized by a linear ordinary AR part and a nonlinear AR scheme.
If nonzero mean series have to be modeled, a constant term may be added in (5).

Such a constant cannot depend linearly on yt−d (since in that case it would be in-
distinguishable from an ordinary AR parameter at lag d) but may be possibly chosen
diJerent at each regime (thus, the mean depends on the regime). The complete model
is

yt = c(yt−d) +
p∑
j=1

�jyt−j +
p∑
j=1

k∑
i=1

�(i)
j Si(yt−d)yt−j + et ; (6)

c(yt−d) = ci if ri−1¡yt−d6 ri; i = 1; : : : ; k:

3. Estimating the PLTAR model

We suppose that a series {y1; y2; : : : ; yn} is observed. Given the “structural param-
eters”, that is the delay parameter d, number of regimes k, threshold constants ri,
i = 0; 1; : : : ; k, and AR order p, the autoregressive parameters of model (6) may be
estimated by ordinary least squares, by minimizing, with respect to �j, �

(i)
j and the

constant terms ci’s the sum of squares

SSQ =
n∑

t=m+1


yt − c(yt−d) −

p∑
j=1

�jyt−j −
p∑
j=1

k∑
i=1

�(i)
j Si(yt−d)yt−j




2

: (7)
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The residual sum of squares (SSQ) involves all the observations starting from m+ 1,
where m=max(p; d), to n, and contains k+p+pk unknown parameters, or p(k+1) if
constants are not included in the model. A major diJerence with the SETAR model is
that minimization cannot be done separately, for observations belonging to each regime,
because SSQ (7) does not split into terms which include only some parameters subset.

4. Identifying the PLTAR model

The main interest here is in proposing an eJective method for the identi3cation
task, that is determining the “structural parameters”. We are faced with the problem
of simultaneously 3nding, according to some optimization criterion, the number of
regimes, the threshold constants, the delay parameter, and the autoregressive order. We
noted already that this is a kind of combinatorial problem that, unless its dimension
is lowest, typically requires some heuristic algorithm to be employed. We propose the
GA approach which allows us to try several proposal solutions and seek for the one
that maximizes a properly chosen optimization criterion. Details about the eJectiveness
of the GA as optimization tool may be found in Jennison and Sheehan (1995).

We developed our GA along the following guidelines.

(i) The algorithm is replicated over a reasonable range of values d = d1; : : : ; dD.
Therefore, we shall build the best model for any choice of d, and the choice (the
comparison) will be left to the analyst.

(ii) The GA is given the task of 3nding both the number of regimes k and the
threshold constants r1; : : : ; rk−1.

(iii) The common AR model order p is determined by using the AIC criterion.

The AIC (see Akaike, 1977) is a well-known criterion which may serve as the basis
of the order selection procedure. Its application to order selection for nonlinear models
is discussed in Ozaki and Oda (1978) and Ozaki (1982). Though it is documented in
the literature that the AIC is not consistent in choosing the right order of the model,
in the present context we may use it because we have only to compare models in the
presence of a 3nite number of observations. Alternative automatic classi3cation criteria
may be employed as well (see, for instance, Fuller, 1996, p. 437–439, and references
therein).

We let r0 =min{y1; : : : ; yn}, rk =max{y1; : : : ; yn}, and the other threshold values will
be selected inside the set of the time series values. This does not imply any loss of
generality, because the inequality yt−d6 ri, say, may well be replaced by yt−d6ytj ,
where ytj is the greatest observations less than or equal to ri. The steps of the present
GA are structured according to the procedure presented in Goldberg (1989) as simple
GA. A maximum number of regimes is pre-speci3ed, K say. Let {yt1 ; yt2 ; : : : ; ytn} be
the set of the time series values arranged in nondecreasing order. A tentative solution
is represented by a binary array of length n. Each bit corresponds to a time point tj,
and ytj is the observed value of the series at time tj. Let x = (x1; : : : ; xn) be such
array. If xj = 1, then ytj is a threshold constant, while xj = 0 otherwise. Since yt1 = r0
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and ytn = rk , we have x1 = xn = 1, and the solution is essentially characterized by the
string (x2; x3; : : : ; xn−1). The number of regimes is given by x2 + x3 + · · · + xn−1 + 1:
a string is not admissible if the latter sum exceeds K , or some regimes contain too
few observations. A pre-speci3ed number of admissible strings, s say, are generated at
random, and form the set of the initial tentative solutions. For each given string x, and
for each p in a range [1; P], the parameters are estimated according to the previous
section, and the AIC is computed:

AIC(p) = (n− m) log �̂2
p + 2m;

where m= k +p+pk if the constant is included, whilst m=p(k + 1) otherwise, and
�̂2
p is the minimum value attained in (7) divided by n− m. If

AIC(p∗) = min
16p6P

AIC(p)

we select order p∗.
The evaluation of a string within the GA framework is done by means of a positive

real-valued function called “3tness function” which measures goodness of solution. Let
us de3ne our 3tness function

f(x) = exp(−AIC(p∗)=C); (8)

where C is a problem-dependent constant which is introduced to prevent the occurrence
of over8ow in the computation and to scale 3tness suitably.

The set of initial solutions is manipulated by means of the so-called “evolution-
ary operators”. Many have been proposed, but, according to the simple GA proce-
dure, we consider only selection, crossover and mutation. These three operators modify
the solutions and produce a new set with the aim of increasing the average 3tness.
The procedure is iterative, and in each step a new set of solutions is generated from the
previous one. Any set of solutions is called “population”, and the iterative procedure
mimics the evolution of a biological population through a sequence of generations in
such a way that more and more tentative solutions (the “individuals” in the popula-
tions) approach the global optimum. The adoption of the so-called “elitist strategy” is
recommended as well. Such device consists in retaining in a special location the best
string of each generation, so that it cannot be destroyed by the mutation or crossover
operators, and it survives to the next population certainly. The procedure stops as
soon as the maximum pre-speci3ed number of generations, N say, is attained, or some
stopping criterion is met.

The three evolutionary operators are as follows.
Selection: For s times, a string is drawn from the current population with probability

proportional to its 3tness. The new strings replace the population. This device is often
referred to as “roulette wheel rule”.
Crossover: We adopt the simplest form, that is the single point crossover. We con-

sider [s=2] string pairs, where the two strings in each pair are chosen at random, and
operate a crossover for each of them with pre-speci3ed probability pc. If crossover
is to be performed, a positive integer, called the “cutting point”, is chosen uniformly
randomly in the range from 2 to n − 2. Let ‘ be the cutting point, and the pair
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of strings be

xa = (xa1 ; : : : ; x
a
‘; x

a
‘+1; : : : ; x

a
n);

xb = (xb1 ; : : : ; x
b
‘; x

b
‘+1; : : : ; x

b
n):

Two new strings are generated by exchanging the bits on the right side of the cutting
point between the two current strings. The new strings are

xa = (xa1 ; : : : ; x
a
‘; x

b
‘+1; : : : ; x

b
n);

xb = (xb1 ; : : : ; x
b
‘; x

a
‘+1; : : : ; x

a
n):

and are taken to replace the old ones.
Mutation: Any bit {xj; j=2; : : : ; n−1} of any string is allowed to 8ip with probability

pm, usually quite small.
The three operators are designed for diJerent tasks. Selection makes the best 3t

individuals to spread in the next generations. Crossover combines promising solutions,
as they come from the selection step, to put together blocks that are themselves parts of
“high quality” solutions. Mutation maintains diversity in the population, and possibly
recovers bits that would be impossible to create by means of the other two operators.

We stress that a similar procedure may be applied for identi3cation of the SETAR
models. Only a simple modi3cation is needed concerned with the 3tness function (8),
by substituting to (7) the appropriate residual sum of squares of the SETAR model.
In comparison to Wu and Chang (2002), our procedure is designed for obtaining the
best model for any choice of the delay parameter d and number of regimes k, and
allows selection of the values of the threshold constants ri in the entire set of time
series values.

5. Simulation results

Our simulation study is aimed at checking two properties of our model building
procedure. The 3rst one is its ability to identify and estimate the parameters of arti3cial
time series that are generated by a PLTAR model. The second one is the ability of our
procedure to yield an accurate description of arti3cial time series that are generated by
some other nonlinear models such as SETAR and EXPAR.

Let, for instance, the time series {yt} be generated according to the PLTAR model

yt =




−0:8yt−1 + et if yt−16− 1;

(0:6 + 1:4yt−1)yt−1 + et if − 1¡yt−16 0;

(0:6 − 1:4yt−1)yt−1 + et if 0¡yt−16 1;

−0:8yt−1 + et if yt−1¿ 1;

(9)

where {et} is a Gaussian white noise with zero mean and unit variance. The delay
parameter is d=1, the number of regimes is k=4 and the AR order is p=1. There are
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Fig. 1. Boxplot of the distributions of the estimated parameter for time series generated by a PLTAR: 1000
series of 500 observations.

no constant terms. Models similar to (9) have been proposed by Ozaki (1981, 1982)
and Priestley (1988) amongst others. The routines RANDOM and PPND16 (Applied
Statistics Algorithms) have been used for generating a stretch of 2000 Gaussian stan-
dard random numbers {et}. Then, model (9) has been used to provide us with the time
series {yt}. We have retained the last 500 observations and discarded the initial 1500.
Discarding so many values is needed for eliminating the transient eJect of the starting
values in threshold type models, as noted in Chan and Cheung (1994), for instance. This
procedure has been replicated 1000 times, so that we have 1000 series with 500 ob-
servations each. Also, 1000 series with 1000 observations each have been generated as
described before. In the GA a diJerent generator was used for providing uniform ran-
dom numbers in the interval (0,1), that is the UNIFORM routine. We made a rather
standard choice for the GA parameters, that is the population size was taken s=30, the
crossover and mutation probabilities were 0.8 and 0.001, respectively, and the number
of generations was 1000. For the parameters choice in optimization problems see, for
instance, De Jong (1975), Mitchell (1996), p. 175, Haupt and Haupt (1998), p. 113,
Chatterjee et al. (1996) and Chatterjee and Laudato (1997). The number of regimes
was allowed to vary from 1 to 5, and the AR order from 1 to 5 as well. All delay
parameter values were tried from 1 to dD = 5. In each regime, at least 40 observa-
tions were required. The constant C we considered appropriate to compute the 3tness
function (8) was 100.

The results obtained for the time series generated by the model (9) may be sum-
marized in Figs. 1 and 2 for 500 observations and in Figs. 3 and 4 for 1000 observa-
tions. In both cases the estimated parameter curve reproduces the true parameter curve
fairly well on the average. Boxplots show that the standard error of the estimates is
small when the autoregressive parameter is relatively large, while it increases when the
parameter is smaller in modulus, or more variable with respect to yt−1. In the lat-
ter case, estimates may be biased (towards zero). Nevertheless, the estimation pro-
cedure based on the GA is able to yield model estimates such that the predicted
(one-step-ahead) time series, over 1000 replications, are close to the arti3cial time
series.
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Fig. 2. Histogram of the residual variance for time series generated by a PLTAR: 1000 series of 500
observations.
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Fig. 3. Boxplot of the distributions of the estimated parameter for time series generated by a PLTAR: 1000
series of 1000 observations.

In the second simulation experiment we consider one of the many threshold models
studied in Chan and Cheung (1994):

yt =

{
0:9yt−1 + et if yt−16 0;

−0:1yt−1 + et if yt−1¿ 0;

where {et} has zero mean and �2
e = 1. For each of 1000 replications we generated

2000 observations, and retained the last 500. Also, 1000 arti3cial time series of 1000
observations were generated. We estimated on these arti3cial series a SETAR model
according to the procedure reported in Tong (1990), a SETAR model by using the
GA and a PLTAR model by means of our GA-based procedure. Distributions of
the parameter estimated curve yielded by each of the three algorithms, along with the
respective residual variance distribution, are reported for 500 observations in
Figs. 5–10. In all cases the adherence is good for values of the state yt−1 away
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Fig. 4. Histogram of the residual variance for time series generated by a PLTAR: 1000 series of 1000
observations.
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Fig. 5. Boxplot of the distributions of the estimated parameter (SETAR model, 3rst method): 1000 series
of 500 observations.

from zero, since bias is negligible, while slight diJerences arise if yt−1 is near zero.
The residual variance with the GA-based method is however less variable and more
centered on the true value 1. Furthermore, it may be seen that the step in the parameter
is adequately approximated by the PLTAR model. Similar results were obtained for
1000 observations.

The third simulation experiment is concerned with estimating a PLTAR model for
the time series generated by the exponential autoregressive (EXPAR) model (Haggan
and Ozaki, 1981)

yt = {1:95 + 0:23 exp(−y2
t−1)}yt−1 + {−0:96 − 0:24 exp(−y2

t−1)}yt−2 + et ; (10)

where {et} is a Gaussian white noise with zero mean and unit variance. For 1000
replications we generated 2000 observations and discarded the 3rst 1500. This way
1000 series of 500 observations were available. Also for 1000 replications series of
1000 observations were generated. We adapted to such arti3cial time series a PLTAR
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Fig. 6. Histogram of the residual variance (SETAR model, 3rst method): 1000 series of 500 observations.
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Fig. 7. Boxplot of the distributions of the estimated parameter (SETAR model, GA method): 1000 series of
500 observations.

model and used our procedure based on the GA. The estimated PLTAR model was
found able to represent fairly well the arti3cial time series {yt} though this latter
was generated by a diJerent model. For 500 observations, the average residual vari-
ance was 0.93 (standard error of the estimate 0.07) by the PLTAR model and 1.48
(standard error 0.83) by estimating the correctly identi3ed EXPAR model (10). For
1000 observations we obtained similar results.

We considered as well the model 3tted in Ozaki (1982) to the Canadian lynx data
and used in Cai et al. (2000) for simulation purpose. We generated 1000 series of both
500 and 1000 observations from the model

yt = a1(yt−1)yt−1 + a2(yt−1)yt−2 + et ; (11)
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Fig. 8. Histogram of the residual variance (SETAR model, GA method): 1000 series of 500 observations.
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Fig. 9. Boxplot of the distributions of the estimated parameter (PLTAR model): 1000 series of 500 obser-
vations.

where

a1(yt−1) = 0:138 + (0:316 + 0:982yt−1) exp(−3:89y2
t−1);

a2(yt−1) = −0:437 − (0:659 + 1:26yt−1) exp(−3:89y2
t−1)

and {et} is a stretch of independent identically distributed Gaussian variates with mean
zero and variance 1. A PLTAR model was 3tted to these arti3cial time series by
applying our GA procedure. The average residual variance was 0.95 (0.07) for 500
observations. Fitting to the data the correct model (11) by least squares, we obtained the
average residual variance equal to 0.99 (0.07). This means that the rather complicated
parameters of model (11) are well approximated by the piecewise linear continuous
functions. Similar results we obtained for 1000 observations.
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Fig. 10. Histogram of the residual variance (PLTAR model): 1000 series of 500 observations.

6. Applications to real time series

We analyze three well-known data sets, the Canadian lynx data, the sunspot numbers
and the blow8y population data. These are listed in Tong (1990) and downloadable
from the web sites (RWC; TSDL).

The annual records of the number of lynx trapped in the Mckenzie River district of
North-west Canada from 1821 to 1934 are known as Canadian lynx data, and include
114 observations. This time series has been extensively studied (see Tong, 1990).
Data are usually transformed as log10 (number recorded as trapped in year 1820+t),
t = 1; : : : ; 114. The following SETAR(2;5,2) model (Tong, 1980; Tong and Dabas,
1990)

yt =




0:768 + 1:064yt−1 − 0:200yt−2 + 0:164yt−3 − 0:428yt−4

+0:1817yt−5 + et if yt−26 3:05;

2:254 + 1:474yt−1 − 1:202yt−2 + et if yt−2¿ 3:05;

seems able to reproduce quite well the time series behavior. Parameter estimates were
computed using the 3rst 100 observations. The last 14 observations were set apart to
check the model forecasting adequacy.

For this model the residual variance is 0.0415, the AIC value −268, and the one-step-
ahead forecast average square error (ASE) on years 1921–1934 is 0.0136. We also
estimated a SETAR model for this data set using our GA procedure and d=2, obtaining
slightly better results (residual variance 0.040, AIC = −271, and ASE = 0:0101).

Our PLTAR models were estimated by using the 3rst 100 observations. The delay
parameter d has been considered from 1 to 6. For each value of d, the GA procedure
was applied with the AR order varying from 1 to 10, the number of regimes from 1 to
3, and, in each regime, at least 20 observations were required. In Table 1 the results
are reported. It may be seen that the minimum AIC is obtained for delay parameter
3, 2 regimes and AR order 4, whilst the threshold constant equals 3:111. The least
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Table 1
Fitting a PLTAR model to the Canadian lynx data

d AIC Regimes Thresholds AR order �2
e ASE (21–34)

1 −260.63 3 2.94; 3.411 2 0.0433 0.0224
2 −273.78 2 3.31 4 0.0350 0.0121
3 −274.91 2 3.111 4 0.0345 0.0225
4 −268.15 2 2.769 2 0.0425 0.0269
5 −256.16 3 2.894; 3.433 2 0.0455 0.0345
6 −260.82 3 3.111; 3.433 2 0.0432 0.0153

ASE, however, was found by assuming the delay parameter equal to 2, and, in this
case, the threshold constant is assumed 3:31. By comparing the rows in Table 1 which
correspond to d=2 and 3, we may judge the two models fairly equivalent, with a slight
preference for the choice d = 2 as it seems to ensure better forecasting performance.
In Tong (1990), p. 377, motivation is provided for choosing either d= 2 or 3.

The chosen model is the following:

yt =




0:3230 + (1:2106 − 0:1037yt−2)yt−1 + (−0:7704 + 0:4257yt−2)yt−2

+(2:0506 − 0:8498yt−2)yt−3 + (−1:1132 + 0:3726yt−2)yt−4

+et if yt−26 3:3101;

0:0484 + (−9:8474 + 3:2370yt−2)yt−1 + (25:4669 − 7:5009yt−2)yt−2

+(−24:9680 + 7:3127yt−2)yt−3 + (10:1568 − 3:0322yt−2)yt−4

+et if yt−2¿ 3:3101:

The Ljung–Box test statistics is 19.95, and the McLeod–Li one is 15.29. As the lags
are 15 the '2 quantile at 0.95 level is about 25, therefore we do not reject the null
hypothesis that residuals are uncorrelated and have linear structure.

Let us now consider the yearly recorded sunspot events. The time series starts from
1700 and is regularly updated (RWC). In Tong and Lim (1980) a SETAR model was
proposed for the sunspot numbers (1700–1920). Let us write down this model as given
in Tong (1990), p. 425, where some minor corrections were incorporated

yt =




11:97 + 1:71yt−1 − 1:26yt−2 + 0:236yt−3 + et if yt−36 36:6;

7:84 + 0:73yt−1 − 0:04yt−2 − 0:20yt−3 + 0:16yt−4

−0:22yt−5 − 0:02yt−6 + 0:15yt−7 − 0:24yt−8

+0:31yt−9 − 0:37yt−10 + 0:38yt−11 + et if yt−3¿ 36:6:

(12)

Model (12) is a SETAR(2;3,11) with residual variance 153.71, AIC=1084.33, and
ASE (1921–1955) equal to 153.88. By employing our procedure based on GA, the
best SETAR model for these data turned out to be a SETAR(4;2,3,3,1), with delay
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Table 2
Fitting a PLTAR model to the sunspot numbers

d AIC Regimes Thresholds AR order �2
e ASE (21–55)

1 1105.93 4 24.1; 40; 57.1 2 173.74 245.6
2 1058.93 4 16; 35.6; 52.2 3 132.27 183.3
3 1065.97 3 20.9; 38.5 3 142.14 147.7
4 1086.74 4 9.6; 20.9; 38.5 4 144.03 217.0
5 1119.77 3 27; 47.8 2 191.04 220.2
6 1109.17 2 66.6 3 181.59 202.6
7 1099.61 3 36; 47.8 3 166.96 149.8
8 1088.91 2 57.1 3 164.81 140.0

parameter d = 3, having residual variance 136.66, AIC=1064 and ASE=138.5. In
Table 2 some results from the PLTAR models, estimated by varying the delay param-
eter from 1 to 8, are displayed. We may see that the least AIC is obtained for d= 2.
The GA searched for the optimal number of regimes as well, in the range 1–4. In each
regime, however, there had to be at least 30 observations. The maximum AR order
was set to 12.

Often the sunspot numbers are transformed according to 2{[1+(sunspot numbers in
year (1699 + t)]1=2 − 1}, t = 1; 2; : : : : In Ghaddar and Tong (1981) a SETAR(2;11,3)
model was 3tted to the 280 transformed data (1700–1979), with delay parameter 8.
In Tong (1990, p. 421), this model was considered with some minor corrections
of the autoregressive parameter estimates. The modi3ed version is the following
SETAR(2;10,2) model

yt =




1:89 + 0:86yt−1 + 0:08yt−2 − 0:32yt−3 + 0:16yt−4 − 0:21yt−5

−0:00yt−6 + 0:19yt−7 − 0:28yt−8 + 0:2yt−9 + 0:1yt−10 + et

if yt−86 11:93;

4:53 + 1:41yt−1 − 0:78yt−2 + et

if yt−8¿ 11:93:

The pooled residual variance is 3.734, AIC=381:08, and the ASE over the years 1980
–2001 is about 4.189. Several values for the delay parameter d were tried to be used
with our GA procedure for estimating some PLTAR models to the transformed data
(1700–1979). In Table 3 the results are displayed.

Both in the transformed and untransformed case it may be seen that the use of
piecewise linearly varying parameters may provide an equivalent or slightly better
3tting with more parsimonious models. From the residuals (transformed data) we may
compute the Ljung–Box and McLeod–Li test statistics with 35 lags. We obtain 28.02
and 45.69, respectively, so that the model is to be accepted.

The blow8y population data are the bidaily population sizes of the blow8ies obtained
by Nicholson (1957). There are 350 observations available. In Tsay (1988) several
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Table 3
Fitting a PLTAR model to the transformed sunspot numbers

d AIC regimes thresholds AR order �2
e ASE (80–01)

1 415.6 2 7.4234 3 4.343 4.267
2 376.11 3 5.2388; 10.1820 3 3.638 3.088
3 358.07 4 9.15; 11.40; 15.20 4 3.180 4.427
4 391.25 4 7.74; 10.82; 13.62 3 3.736 7.542
5 407.84 2 14.1493 3 4.219 3.1984
6 407.09 3 11.4015; 16.0997 3 4.084 6.495
7 385.66 3 8.5262; 13.3623 3 3.770 4.249
8 383.95 3 11.9571; 14.5892 3 3.746 3.756

Table 4
Fitting a PLTAR model to the log10-transformed blow8y data

d AIC regimes thresholds AR order �2
e

1 −814.27 4 2.7412; 3.0997; 3.4333 4 0.0123
2 −692.00 1 4 0.0267
3 −703.62 2 2.7528 4 0.0239
4 −714.31 4 2.7152; 3.0378; 3.2938 4 0.0204
5 −684.37 3 2.734; 3.0878 4 0.0251
6 −693.92 3 2.9165; 3.236 4 0.0239
7 −716.67 3 2.9566; 3.2217 4 0.0213
8 −727.70 4 2.9614; 3.2529; 3.5562 3 0.0201

models were considered for this data set. A smooth threshold autoregressive (STAR)
model was suggested in Chan and Tong (1986) for the log10-transformed series. Two
STAR models were estimated for observations (1–206) and reported in Tsay (1988).
The residual variance is 0.021 for the 3rst version and 0.023 for the second one, and,
for this latter, we may compute the AIC equal to −714:76. Though this model was
judged inadequate (see Tsay, 1988, p. 249), we tried to estimate a PLTAR model on
the same 206 observations by using our GA procedure. We chose the maximum AR
order equal to 4, and the maximum number of regimes equal to 4. In Table 4 the
results for the delay parameters from 1 to 8 are displayed, and the least AIC values
are attained for d=1 and 8. The residuals from the 3t of the PLTAR model are plotted
in Fig. 11 for d= 1 and in Fig. 12 for d= 8. It may be seen that both PLTAR models
for delay parameters 1 and 8 are satisfactory. The residuals for d = 8 are slightly
less autocorrelated, while their variance is larger due to an isolated large value. This
supports the suggestion given in Tsay (1988), where a similar plot is displayed for the
residuals from a STAR model, that at least one outlying observation is present in the
data set. The Ljung–Box statistics was computed 37.39 with 35 lags. We may conclude
that there is no linear structure left in the residuals’ sequence. In addition, according
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Fig. 11. Residuals from the PLTAR model 3tted to the blow8y data, d = 1.
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Fig. 12. Residuals from the PLTAR model 3tted to the blow8y data, d = 8.

to the McLeod–Li test (24.94 for 35 lags), we are allowed to accept the absence of
nonlinearity.

7. Conclusions

We considered a special nonlinear threshold model that we called piecewise linear
(self-exciting) threshold autoregressive (PLTAR). Such model may be obtained either
as a particular state-dependent model or a particular functional autoregressive model.
We proposed an easy method for identifying and estimating the PLTAR model, which
is essentially based on a genetic algorithm. In a simulation experiment we used the
PLTAR model for approximating some diJerent nonlinear models, obtaining satisfac-
tory results. We also 3tted the PLTAR model to some well-known real time series.
Both adequacy of 3tting and forecasting performance were found quite satisfactory.
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